Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Mol Pharm ; 20(7): 3494-3504, 2023 07 03.
Article in English | MEDLINE | ID: covidwho-20243366

ABSTRACT

PEGylated lipid nanoparticle-based Covid-19 vaccines, including Pfizer's BNT162b2 and Moderna's mRNA-1273, have been shown to stimulate variable anti-PEG antibody production in humans. Anti-PEG antibodies have the potential to accelerate the plasma clearance of PEGylated therapeutics, such as PEGylated liposomes and proteins, and compromise their therapeutic efficacy. However, it is not yet clear whether antibody titers produced by PEGylated Covid-19 vaccines significantly affect the clearance of PEGylated therapeutics. This study examined how anti-PEG IgM levels affect the pharmacokinetics of PEGylated liposomal doxorubicin (PLD) and compared the immunogenicity of a lipid nanoparticle formulation of linear DNA (DNA-LNP) to standard PEG-HSPC liposomes. DNA-LNP was prepared using the same composition and approach as Pfizer's BNT162b2, except linear double-stranded DNA was used as the genetic material. PEGylated HSPC-based liposomes were formulated using the lipid rehydration and extrusion method. Nanoparticles were dosed IM to rats at 0.005-0.5 mg lipid/kg body weight 1 week before evaluating the plasma pharmacokinetics of clinically relevant doses of PLD (1 mg/kg, IV) or PEGylated interferon α2a (Pegasys, 5 µg/kg, SC). Plasma PEG IgM was compared between pre- and 1-week post-dose blood samples. The results showed that anti-PEG IgM production increased with increasing PEG-HSPC liposome dose and that IgM significantly correlated with the plasma half-life, clearance, volume of distribution, and area under the curve of a subsequent dose of PLD. The plasma exposure of Pegasys was also significantly reduced after initial delivery of 0.005 mg/ml PEG-HSPC liposome. However, a single 0.05 mg/kg IM dose of DNA-LNP did not significantly elevate PEG IgM and did not alter the IV pharmacokinetics of PLD. These data showed that PEGylated Covid-19 vaccines are less immunogenic compared to standard PEGylated HSPC liposomes and that there is an antibody threshold for accelerating the clearance of PEGylated therapeutics.


Subject(s)
COVID-19 , Nanoparticles , Rats , Humans , Animals , Liposomes , BNT162 Vaccine , COVID-19 Vaccines , Immunoglobulin M , Polyethylene Glycols/pharmacokinetics , DNA , Phosphatidylcholines
2.
Mol Ther Methods Clin Dev ; 29: 450-459, 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-20240177

ABSTRACT

Following the recent approval of both siRNA- and mRNA-based therapeutics, nucleic acid therapies are considered a game changer in medicine. Their envisioned widespread use for many therapeutic applications with an array of cellular target sites means that various administration routes will be employed. Concerns exist regarding adverse reactions against the lipid nanoparticles (LNPs) used for mRNA delivery, as PEG coatings on nanoparticles can induce severe antibody-mediated immune reactions, potentially being boosted by the inherently immunogenic nucleic acid cargo. While exhaustive information is available on how physicochemical features of nanoparticles affects immunogenicity, it remains unexplored how the fundamental choice of administration route regulates anti-particle immunity. Here, we directly compared antibody generation against PEGylated mRNA-carrying LNPs administered by the intravenous, intramuscular, or subcutaneous route, using a novel sophisticated assay capable of measuring antibody binding to authentic LNP surfaces with single-particle resolution. Intramuscular injections in mice were found to generate overall low and dose-independent levels of anti-LNP antibodies, while both intravenous and subcutaneous LNP injections generated substantial and highly dose-dependent levels. These findings demonstrate that before LNP-based mRNA medicines can be safely applied to new therapeutic applications, it will be crucial to carefully consider the choice of administration route.

3.
ACS Sustainable Chemistry and Engineering ; 11(6):2079-2088, 2023.
Article in English | Scopus | ID: covidwho-2281786

ABSTRACT

Here, we developed a copper sulfate (CuSO4)-initiated diphenylamine (DPA)-based colorimetric strategy coupled with loop-mediated isothermal amplification (LAMP) for rapid detection of two critical contagious pathogens, SARS-CoV-2 and Enterococcus faecium. To detect the DNA, acid hydrolysis of LAMP amplicons was executed, enabling the development of a blue color. In the LAMP amplicons, the bond between the purines and deoxyribose is extremely labile. It can be broken using 70% sulfuric acid followed by phosphate group elimination, which generates a highly active keto aldehyde group. CuSO4 plays an imperative role inducing DPA to rapidly react with the keto aldehyde group, producing an intense blue color within 5 min. Moreover, low quantities such as 103 copies μL-1 of SARS-CoV-2 RNA and 102 CFU mL-1 of E. faecium were successfully detected, revealing the advantages of the introduced method. To confirm practical applicability, multiplex detection of pathogens was performed using a foldable microdevice comprising reaction and detection zones. Various reactions such as DNA extraction, LAMP, and acid hydrolysis occurred in the reaction zone. Then, colorimetric reagents (DPA, CuSO4, and ethylene glycol) contained in the detection zone were mixed with the keto aldehyde group by simply folding the microdevice, which was heated at 65 °C for 5 min for colorimetric detection. An intense blue color was developed where the target DNA was present. These results indicate that the method proposed in this study is highly suitable for point-of-care applications, especially in resource-limited settings for the rapid detection of harmful pathogens. © 2023 American Chemical Society.

4.
Sci Technol Adv Mater ; 24(1): 2170164, 2023.
Article in English | MEDLINE | ID: covidwho-2287594

ABSTRACT

Messenger RNA (mRNA) therapeutics have recently demonstrated high clinical potential with the accelerated approval of SARS-CoV-2 vaccines. To fulfill the promise of unprecedented mRNA-based treatments, the development of safe and efficient carriers is still necessary to achieve effective delivery of mRNA. Herein, we prepared mRNA-loaded nanocarriers for enhanced in vivo delivery using biocompatible block copolymers having functional amino acid moieties for tunable interaction with mRNA. The block copolymers were based on flexible poly(ethylene glycol)-poly(glycerol) (PEG-PG) modified with glycine (Gly), leucine (Leu) or tyrosine (Tyr) via ester bonds to generate block catiomers. Moreover, the amino acids can be gradually detached from the block copolymers after ester bond hydrolyzation, avoiding cytotoxic effects. When mixed with mRNA, the block catiomers formed narrowly distributed polymeric micelles with high stability and enhanced delivery efficiency. Particularly, the micelles based on tyrosine-modified PEG-PG (PEG-PGTyr), which formed a polyion complex (PIC) and π-π stacking with mRNA, displayed excellent stability against polyanions and promoted mRNA integrity in serum. PEG-PGTyr-based micelles also increased the cellular uptake and the endosomal escape, promoting high protein expression both in vitro and in vivo. Furthermore, the PEG-PGTyr-based micelles significantly extended the half-life of the loaded mRNA after intravenous injection. Our results highlight the potential of PEG-PGTyr-based micelles as safe and effective carriers for mRNA, expediting the rational design of polymeric materials for enhanced mRNA delivery.

5.
Mol Pharm ; 20(7): 3356-3366, 2023 07 03.
Article in English | MEDLINE | ID: covidwho-2273279

ABSTRACT

Despite the success of mRNA-based vaccines against infectious diseases (including COVID-19), safety concerns have been raised relating to the lipid nanoparticles (LNPs) used to deliver the mRNA cargo. Antibodies against the polyethylene glycol (PEG) coating on these non-viral vectors are present in the general population and can in some instances induce allergic reactions. Furthermore, treatment with PEGylated therapeutics may increase the plasma concentration of such anti-PEG antibodies. The widespread use of PEGylated nanoparticles for mRNA vaccines concerns researchers and clinicians about a potential rise in future cases of allergic reactions against mRNA vaccines and cross-reactions with other PEGylated therapeutics. To determine if vaccination with Comirnaty increased the plasma concentration of antibodies against LNPs, we investigated the blood plasma concentration of anti-LNP antibodies in healthy individuals before and after vaccination with the mRNA-based COVID-19 vaccine Comirnaty (BNT162b2). Blood samples were acquired from 21 healthy adults before vaccination, 3-4 weeks after the first vaccination dose but before the second dose, and 2-6 months after the second (booster) dose. The blood plasma concentration of antibodies recognizing the LNPs was analyzed using a microscopy-based assay capable of measuring antibody-binding to individual authentic LNPs. No significant increase in anti-LNP antibodies was observed after two doses of Comirnaty. The LNPs used for intramuscular delivery of mRNA in the vaccine against COVID-19, Comirnaty, do, therefore, not seem to induce the generation of anti-vector antibodies.


Subject(s)
COVID-19 , Hypersensitivity , Nanoparticles , Adult , Humans , COVID-19 Vaccines , BNT162 Vaccine , COVID-19/prevention & control , mRNA Vaccines , Vaccination , Antibodies
6.
Biosensors and Bioelectronics: X ; 12, 2022.
Article in English | EMBASE | ID: covidwho-2246489

ABSTRACT

There seems to be a growing curiosity for utilizing MIPs to recognize molecules that can be applied in numerous fields, such as biomimetic antibodies, detection of viruses and bacteria, the broad range of sensing devices, etc., owing to its scalability and economic viability. MIPs have higher thermal and chemical stability, delivering a promising potential for recognizing bacteria and viruses. The bacteria and virus imprinted polymer exhibit elongated product life-time, reproducible fabrication, robustness, reusability, sensitivity, and high target selectivity. Moreover, the MIPs could give consistent screening along with negligible false positive/negative outcomes, which is vital for the control and prevention of viral and bacterial infections. In the viral and bacterial imprinting process, critical aspects, such as compositional complexity, fragility, solubility, and target size, should be systematically evaluated and analytically considered. Although, the application of MIPs has a number of drawbacks and challenges that require solving to develop sensing platforms with high specificity and sensitivity for clinical application. In the present review, current progress and advancement regarding the reasoning and applications of MIPs as recognition molecules in various biosensors for detecting bacteria and viruses and its existing noteworthy challenges along with future perspectives are also reflected.

7.
ACS Sustainable Chemistry and Engineering ; 2022.
Article in English | Scopus | ID: covidwho-2235729

ABSTRACT

Here, we developed a copper sulfate (CuSO4)-initiated diphenylamine (DPA)-based colorimetric strategy coupled with loop-mediated isothermal amplification (LAMP) for rapid detection of two critical contagious pathogens, SARS-CoV-2 and Enterococcus faecium. To detect the DNA, acid hydrolysis of LAMP amplicons was executed, enabling the development of a blue color. In the LAMP amplicons, the bond between the purines and deoxyribose is extremely labile. It can be broken using 70% sulfuric acid followed by phosphate group elimination, which generates a highly active keto aldehyde group. CuSO4 plays an imperative role inducing DPA to rapidly react with the keto aldehyde group, producing an intense blue color within 5 min. Moreover, low quantities such as 103 copies μL-1 of SARS-CoV-2 RNA and 102 CFU mL-1 of E. faecium were successfully detected, revealing the advantages of the introduced method. To confirm practical applicability, multiplex detection of pathogens was performed using a foldable microdevice comprising reaction and detection zones. Various reactions such as DNA extraction, LAMP, and acid hydrolysis occurred in the reaction zone. Then, colorimetric reagents (DPA, CuSO4, and ethylene glycol) contained in the detection zone were mixed with the keto aldehyde group by simply folding the microdevice, which was heated at 65 °C for 5 min for colorimetric detection. An intense blue color was developed where the target DNA was present. These results indicate that the method proposed in this study is highly suitable for point-of-care applications, especially in resource-limited settings for the rapid detection of harmful pathogens. © 2023 American Chemical Society

8.
Acta Pharmaceutica Hungarica ; 90(2-3):109, 2020.
Article in English | EMBASE | ID: covidwho-2033586

ABSTRACT

Background: As we have seen in the last six months, emerging and re-emerging viruses could be the biggest threat for the human population nowadays in our modern, accelerated and globalized world. Both of influenza and coronaviruses have the potential to cause serious pandemics worldwide. Unfortunately, there are no effective enough medications against most of these viruses. Aims: As some glycopeptide antibiotics and their derivatives proved to be effective against several viruses1, therefore we planned to synthesize some new derivatives equipped with highly fluorinated lipophilic groups. Methods: Perfluorobutyl and perfluorooctyl groups were conjugated to the N-terminus of teicoplanin pseudoaglycone and vancomycin aglycone derivatives through ethylene glycol and tetraethylene glycol linkers by means of photoinitiated addition and azide-alkyne click reaction. The effect of the derivatives were evaluated against several viruses including influenza and human coronavirus. Results: Vancomycin aglycone derivatives were inactive against all of the studied influenza strains, while 3 out of the 4 perfluorobutyl and perfluorooctyl derivatives of teicoplanin pseudoaglycone displayed very good activity against influenza H1N1, H3N2 and B strains. Two of the derivatives were active against human coronavirus as well. Conclusion: We hope that these results can open a new way in finding more effective antivirals based on glycopeptide antibiotics.

9.
Mater Today Proc ; 65: 3774-3779, 2022.
Article in English | MEDLINE | ID: covidwho-1926771

ABSTRACT

This paper promotes a basic, quick, stature adaptable, and direct approach to selecting exceptionally suitable materials in polyethylene glycol diacrylate (PEGDA) and silicon for microneedle fabrication. Researchers and scientists are facing challenges in readily selecting biocompatible materials for microneedle fabrication. Solid porous silicon and PEGDA microneedles are particularly biocompatible and desirable for vaccine delivery by the transdermal vaccine delivery method if microneedle arrays are fabricated successfully using lithography techniques as they belong to enhanced patient concurrence and well-being. Moreover, silicon and PEGDA microneedles are the ultimate for conveying coronavirus vaccines. In this work, we applied the ANSYS workbench tool to investigate the properties of triangular pyramidal-shaped solid silicon and PEGDA microneedle array to perform structural analysis on microneedle for estimating the capability of an array of needles to enter and convey vaccines along with the skin. These outcomes demonstrated that microneedles of porous silicon are better than polymers such as PEGDA as far as mechanical strength and capacity to convey drugs. Buckling was anticipated as the fundamental method to estimate the failure of microneedles and finally, by analysis, it was clear that buckling does not impact the potential of the silicon microneedle needle array. Silicon and PEGDA microneedles are penetrated against human skin surfaces in explicit dynamics by utilizing the ANSYS tool to select the best material. Along these lines, the current strategy can work with silicon and PEGDA microneedles for useful applications. The von Mises stresses generated by applying loads on silicon and PEGDA arrays were greater than the skin resistance of 3.18 MPa and suitable for skin insertion. Silicon microneedles are sustained due to buckling but PEGDA needles fail if the loading is more than 0.1 N. Vaccination can be provided to humans if needle arrays are fabricated based on this approach and design analysis and considering parameters.

10.
Regen Eng Transl Med ; 8(1): 32-42, 2022.
Article in English | MEDLINE | ID: covidwho-1756993

ABSTRACT

Abstract: Poly(ethylene glycol) (PEG) is a nontoxic, hydrophilic polymer that is often covalently attached to proteins, drugs, tissues, or materials; a procedure commonly referred to as PEGylation. PEGylation improves solubility, circulation time, and reduces immunogenicity of therapeutic molecules. Currently, there are 21 PEGylated drugs approved by the Food and Drug Administration (FDA), and more in the developmental stage. In addition to the polymer's applications in the clinic, PEG is widely used as a solvent and emulsifying agent in the formulation of cosmetics, cleaning, and personal care products. Due to the ubiquitous presence of the polymer in everyday products, patients can develop antibodies against PEG (αPEG Abs) that can be problematic when a PEGylated drug is administered. These αPEG Abs can provoke hypersensitivity reactions, accelerated drug clearance, and decreased therapeutic efficacy. Herein, we review how the prevalence of PEG in everyday products has induced αPEG Abs within the general public as well as the effect of these Abs on the performance of PEGylated therapeutics. We will focus on clinical manifestations following the administration of PEGylated drugs. Lay Summary: Poly(ethylene glycol) (PEG) is a polymer found in products including cosmetics, personal care products, cleaning agents, medicine, and food. Due to the prevalence of PEG, people can develop antibodies (αPEG Abs) against the polymer, which recognize PEG as foreign. Of note, PEG is frequently incorporated into drug formulations to improve therapeutic efficacy. Complications can arise when a patient receiving a PEGylated drug has previously developed αPEG Abs from interactions with PEG in everyday products. The presence of high concentrations of αPEG Abs in blood can result in decreased treatment efficacy and allergic reactions to a wide range of therapeutics.

11.
Adv Drug Deliv Rev ; 180: 114079, 2022 01.
Article in English | MEDLINE | ID: covidwho-1620432

ABSTRACT

Polyethylene glycol or PEG has a long history of use in medicine. Many conventional formulations utilize PEG as either an active ingredient or an excipient. PEG found its use in biotechnology therapeutics as a tool to slow down drug clearance and shield protein therapeutics from undesirable immunogenicity. Nanotechnology field applies PEG to create stealth drug carriers with prolonged circulation time and decreased recognition and clearance by the mononuclear phagocyte system (MPS). Most nanomedicines approved for clinical use and experimental nanotherapeutics contain PEG. Among the most recent successful examples are two mRNA-based COVID-19 vaccines that are delivered by PEGylated lipid nanoparticles. The breadth of PEG use in a wide variety of over the counter (OTC) medications as well as in drug products and vaccines stimulated research which uncovered that PEG is not as immunologically inert as it was initially expected. Herein, we review the current understanding of PEG's immunological properties and discuss them in the context of synthesis, biodistribution, safety, efficacy, and characterization of PEGylated nanomedicines. We also review the current knowledge about immunological compatibility of other polymers that are being actively investigated as PEG alternatives.


Subject(s)
Drug Carriers , Nanomedicine , Polyethylene Glycols/chemistry , Animals , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Drug Delivery Systems , Humans
12.
Afr J Emerg Med ; 11(1): 37-38, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1064701

ABSTRACT

INTRODUCTION: Due to the nationwide lockdown to mitigate the spread of COVID-19 and subsequent alcohol ban in South Africa, several cases of toxic alcohol ingestion presented to our emergency unit. Many of these patients admitted to making home brews of alcohol while others simply use industrial toxic alcohols. The diagnosis of these poisonings is challenging as direct assays are not available in our setting. CASE REPORT: We present a case of presumed ethylene glycol poisoning that presented with persistent seizures and a high anion gap metabolic acidosis (HAGMA). DISCUSSION: A high index of suspicion for toxic alcohol poisoning should be maintained in patients presenting with an altered mental status, seizures and a HAGMA. Indirect markers such as clinical features and laboratory results can lead to the diagnosis when direct assays are unavailable.

SELECTION OF CITATIONS
SEARCH DETAIL